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Abstract

Fuzzy logic allows effective decision making in the
presence of uncertainty. Identifying spoken words, even in
an ideal environment by a trained speaker, is a complex
task filled with uncertainty. The speech waveform is
nonlinear and variant, removing the possibility of simple
analysis. Dynamic programming is a time normalization
technique that allows static templates to be used to
identify spoken words. Fuzzy logic enhancements enable
the technique to handle noise and quantization errors
better and improves classification accuracy. An important
consequence of using a fuzzy based system is that the
system's confidence in its identification can be used to
accept the identification or to request further information.

1. Introduction

Speech is a human's most efficient communication
modality. Beyond efficiency, humans are comfortable and
familiar with speech. Other modalities require more
concentration, restrict movement, and cause body strain
due to unnatural positions. [LEA80]

The main problem in speech recognition, as with other
complex tasks that require some form of intelligence, is the
amount of information that must be examined before
making a classification or decision. Speech recognition is
an extremely complex pattern matching problem. The
complexity arises from the variability in speech rate, pitch,
volume, and emotion. Together with the natural
differences in individual human voice production systems,
these factors produce a variable and nonlinear waveform.
As if these challenges were not enough, a speech
recognition system must also deal with non-speech sounds
and environmental noise.

Given two representations of the same spoken word
by the same speaker under similar conditions, it is highly
probable that they will be of different lengths. The main
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problem is that variations in speaking rate cause nonlinear
changes on the time axis. Dynamic Programming (DP) is
one technique that attempts to optimally eliminate timing
differences between two waveforms.

2. Dynamic Programming

The DP algorithm works by warping one waveform
onto the axis of the other. However, rather than merely
stretching or compressing the waveform, the algorithm
attempts to match the waveforms so that similarities are
maintained and time aligned. In the classic algorithm, one
of the waveforms is warped onto the time axis of the other.
However, recent research has shown that mapping both
waveforms onto a new common axis performs much better.
This technique is called symmetric dynamic programming
(SDP). The flowchart for SDP is shown in Figure 1 for two
waveforms, A and B, having I and J samples respectively.
[WAIB90, pp. 159 - 163]

Figure 1. SDP Flowchart
SDP creates a common time axis for two
waveforms with differing time axes.

The performance of the DP-equation for SDP depends
on the chosen slope restriction. The slope restriction
ensures that the warping function has an even gradient. It
also ensures that the algorithm does not focus on
similarities that are outside a window of usefulness.



Experimental results show a slope restriction of one to be
optimal. Therefore, the DP-equation is: [WAIB90, p. 163]
g(i—1,j-2)+2d(,j-1)+d(i,))
g(i,j) =min| g(i—1,j -2)+2d(i,j)

g(i—2,j~1)+2d( ~1,j) +d(i, ) (1)
where the distance between any two samples is given by:
d(i,j)=|a; b,

The DP-equation g(i, j) involves picking the path with the
lowest distance and can therefore be viewed as a gradient.
With a slope restriction of one, three paths must be
examined as shown in Figure 2. The slope restriction
requires that the function step at most once in the

horizontal or vertical direction before stepping
orthogonally or diagonally.
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Figure 2. Gradient Paths
When the slope restriction is set to one,
three paths must be examined to find the
minimum gradient.

The total distance between the waveforms is given at
the end of the algorithm as D(A, B). This distance can be
used directly as a comparison between the input waveform
and a stored template. Alternatively, the common axis
representation of the waveform after warping can be used
for further processing.

While finding the best time alignment between a
template and an unknown, dynamic programming also
isolates and matches features. The implementation
employed for this paper used dynamic programming on
time-amplitude values only; no spectral analysis was
performed. While neglecting spectral information limits
the overall accuracy of the recognition process, dynamic
programming without specialized hardware is too time
consuming to perform additional complex analysis such as
Fourier analysis or Linear Predictive Coding.

Dynamic programming has a complexity of O(n2),
which can cause unreasonable demands on both processing
time and system memory. Fortunately, several constraints
can be employed to reduce the complexity. By providing a
slope constraint, the search area can be limited. Based on
work by Sakoe and Chiba, an optimal slope constraint of
one was chosen. [WAIB90, pp. 159-65] Dynamic
programming can be viewed graphically as a plot of the
template waveform (a) vs. the unknown waveform (b). The
warping function defines the optimal path from the starting
point, which is always (0, 0), to the ending point, (A-1, B-

1) where A and B are the lengths of the template and the
unknown waveforms respectively. When the two
waveforms are exactly the same, the warping function
becomes the diagonal line b = a.

Since the starting and ending points are fixed and the
slope is constrained, it is possible to define the area of all
possible solutions.

The top and left sides are bounded by:

y= %+(B - 1)—@ or x=2(y-(B-1))+(A-2)
y=2x+1

The bottom and right sides are bounded by:

y:2x+(B—2)—2(A—1)orx:%_z)%A—l)
_-h
2
Figure 3 shows the possible paths that may be taken

by the warping function. However, due to the recursive
nature of the dynamic programming algorithm (equation
1), the left and bottom boundaries cannot be utilized since
values outside their boundaries may be needed for
calculating values within the area of possible solutions.
Notice that the top and right boundaries correspond to
starting at the end point and following the lines of
maximum and minimum slope towards the starting point.
Similarly, the bottom and left boundaries correspond to
following the lines of maximum and minimum slope from
the starting point and moving towards the end point.
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Figure 3. Area Searched by DP Algorithm
The four lines bound the region of all
possible solutions. The gray region
shows the area that must be searched
for possible solutions.
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Figure 4. SDP Example

The two waveforms A and B used in the

example are shown.
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Table 1. Waveform Distance Matrix
Each cell contains the distance from a
point on waveform A to a point on

waveform B.
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Table 2. Waveform Gradient Matrix
Each cell contains the minimum gradient.

The DP-algorithm is perhaps best explained with an
example. Figure 4 shows the two waveforms to be
compared; waveform A has a length of 10, and waveform
B has a length of 15. The first step is to calculate the
distance from each point in waveform A to each point in
waveform B. To illustrate the calculations at time 0, B is 1
and A is 0; hence, (0, 0) is 1-0 =1 in Table 1. At time 1, A
is 1; hence, (0, 1) is 1-1 = 0. Table 1 shows the results of
these distance calculations. The next step is to apply
equation 1 and calculate the recursive gradients as shown
in Table 2. The final step is to normalize the gradient at
(A-1, B-1) = (9, 14) by dividing by A+B = 25. The final
result, 0.36, is the best distance between the two
waveforms.

The symmetric dynamic programming algorithm has
been implemented in two forms: a classical, crisp form and
a fuzzy form. The crisp form calculates the distance at
each step by taking the absolute magnitude of the
difference between the amplitudes of the two waveforms.
The total distance measure between the two waveforms is
then given by the sum of these differences divided by the
sum of the lengths of the waveforms. This final
normalization is necessary so that short waveforms and
long waveforms have a common distance measure. The
best match is chosen by selecting the waveform with the
shortest total distance. The next section discusses the fuzzy
implementation.



3. Fuzzy SDP

The fuzzy implementation assumes that all waveforms
contain uncertainty. This uncertainty comes from speaker
variation, waveform quantization, noise, and the inability
to completely specify the process of speech recognition.
Each amplitude is therefore represented as a fuzzy number.
A fuzzy number may be viewed as a set of numbers around
a certain interval. For example, integers close to x can be
represented by a fuzzy set in which the closer a number is
to x, the higher its membership in the fuzzy set. The fuzzy
set must be normal, since x must have maximum
membership. [KLIR95]

During the distance calculation, amplitudes are
assumed to vary by some specified amount from the
measured values. Various values were tested, but a
maximum of +16 was experimentally determined to give
the best results. Therefore, when the absolute magnitude of
the distance between two points is computed, it is adjusted
to be a maximum of 16 points closer. The minimum is 0.

The membership function, shown in Figure 5, is:
16-d

7+0.5 0<d<15
DOM =
255-d 15<d <255
510

For distances below the fuzzy distance threshold, in this
case 16, the degree of membership is computed on the
interval [0.5, 1]. For distances above the threshold, the
degree of membership linearly decreases to zero as the
distance approaches the maximum.
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Figure 5. Fuzzy Number Membership Function
Values closer to the actual value have a
higher degree of membership, while
values further away have Ilower

membership.

The membership of the total distance is the average of
the degree of membership of every point along the optimal
path. The result of comparing each template to the
unknown waveform is a fuzzy set consisting of the set of
templates and their degrees of membership, which
represent the templates' similarity to the unknown
waveform. To defuzzify the result and select the most
likely category, the maximum degree of membership is

identified. Then the element from the set of maximum
membership with the minimum distance is selected as the
best match.

4. System Configuration

The majority of isolated word recognizers use a
process called template matching to perform recognition.
[LEA80] When an unknown waveform is presented to the
system, it is compared to a template for each word in the
system to find the best match. If found, that template's
name is assigned to the unknown waveform. [FRIE68]

Although the recognition system designed for this
paper can perform general word recognition, it was
designed primarily to perform isolated digit recognition.
Since the digits are relatively short, the unit of recognition
is a word.

Multiple tests were conducted to determine the
system's performance under various conditions. In each
test, templates and samples were recorded using a low-cost
unidirectional microphone in a noisy environment. The
sampling frequency was 6 kHz with 8 bits per sample.

After recording a template or unknown waveform, the
system performs segmentation to isolate the word. Various
threshold values used by the segmentation routine were
tested. The threshold maximum determines how loud a
sample must be to indicate the start or end of the word.
When processing the waveform, the segmentation routine
searches for the first sample that exceeds the threshold.
The threshold minimum determines how loud a sample
must be to be considered part of the word. Once the
threshold maximum is found, the routine searches
backward until a sample below the minimum is found. The
isolated word is then normalized and stored in memory.

Initial tests were conducted to test the usefulness of
removing the waveform's phase and clipping sample values
below a specified threshold. In both cases, the system
suffered from reduced discrimination. [MILL95]

5. Initial Trial

The first trial was performed using a trained male
speaker. The threshold maximum was set to 16, and the
threshold minimum was set to 4. Template waveforms for
each of the ten digits were recorded and saved first. Then
for each digit, ten sample waveforms were recorded and
saved. The system was then setup to analyze all 100
"unknown" waveforms using first the crisp classification
algorithm and then the fuzzy classification algorithm. The
results are shown in Table 3.



Cris Fuzzy
Digit] % Correct| Error |% Correct| Error
0 0 341 80 0.74
1 20 1.21 40 0.25
2 20 1.88 90 0.17
3 0 3.80 30 0.71
4 0 3.28 90 0.34
5 0 4.68 40 0.80
6 0 4.24 100 0.0
7 90 0.05 100 0.0
8 0 3.34 20 1.08
9 10 1.49 100 0.0
Total 14 2.75 69 0.41

Table 3. Initial Results with a
Trained Male Speaker
Ten unknown samples for each digit
were classified. The system accuracy for
each digit and the total accuracy are
shown for both crisp and fuzzy
techniques.

Error values represent the average distance from the
correct classification to the actual classification. Error
values were calculated by averaging the absolute
magnitude of the differences between the distance from the
correct classification and the distance from the actual
classification:

Y, ~d,

in
E — n=0

' 10
where E;j is the Error for digit i, d' is the distance to the
correct classification for digit i and d is the distance to the
actual classification made by the system for digit i.

Analysis of the crisp results revealed that when the
system misclassified a waveform, it classified it as the
waveform Six 83% of the time. Examination of the
templates revealed that the waveform for Six was on
average 2.25 times shorter than the other templates. Even
though distance calculations are normalized to reduce the
effects of template length, an extremely short template,
relative to the lengths of the other templates, will
predispose the system to that classification. The fuzzy
results show a more even distribution among
misclassifications.

The waveform for the template Six was much shorter
than the other templates because it begins and ends with
the unvoiced phoneme s. Unvoiced phonemes have a much
lower relative volume than voiced phonemes. Since the
threshold maximum was set to a relatively high value, the
beginning and ending phoneme were almost completely
removed from the template. In order to remove the

classification bias, a much lower threshold maximum
needs to be used.

6. Additional Trials

Using the same trained male speaker as in the initial
trial, a new set of template and sample waveforms were
recorded. The threshold maximum was set to 8, and the
threshold minimum was set to 0. The results are shown in
Table 4.

Cris Fuzzy
Digit] % Correct| Error |% Correct| Error
0 100 0.0 100 0.0
1 60 0.29 100 0.0
2 40 0.55 100 0.0
3 0 1.32 40 0.52
4 10 1.56 30 1.27
5 20 1.66 70 0.28
6 100 0.0 100 0.0
7 0 2.81 100 0.0
8 100 0.0 100 0.0
9 20 1.10 80 0.14
Total 45 0.93 82 0.22

Table 4. Results with a Trained Male Speaker
Ten unknown samples for each digit were
classified. Templates and unknowns were
segmented using a lower threshold
maximum to remove classification bias.

Cris Fuzzy
Digit] % Correct| Error |% Correct| Error
0 100 0.0 100 0.0
1 100 0.0 100 0.0
2 100 0.0 100 0.0
3 100 0.0 100 0.0
4 100 0.0 100 0.0
5 100 0.0 100 0.0
6 100 0.0 100 0.0
7 100 0.0 100 0.0
8 100 0.0 100 0.0
9 100 0.0 100 0.0
Total 100 0.0 100 0.0

Table 5. Results with an
Untrained Female Speaker

The results show a dramatic increase in accuracy for
the crisp algorithm. Classification accuracy of all
waveforms except Three and Seven increased.
Interestingly, recognition for Seven dropped from 90% to



0%; this result is quite unexpected since seven is a two
syllable word and has one of the most unique and
consistent waveforms. It is interesting to note that the
template for Zero was longer than the template for Four
(Two was the shortest template).

Another trial was conducted with an untrained female
speaker. The segmentation thresholds were the same as
with the previous male speaker. The results are shown in
Table 5. The system correctly classified all 100 waveforms
using both the crisp and fuzzy algorithms.

In an attempt to explain the perfect results of the
female speaker, crisp template correlations for each
speaker were calculated. The results for the male speaker
are shown in Table 6; the results for the female speaker are
shown in Table 7. The template correlations are
symmetric.

Digif 0| 1|2 ]|3]4[5]6|7]8]9
0 1 0 [11.7]14.8/13.2]12.013.1{15.6{13.4{14.1{16.0

1 0 |13.911.2{11.7{10.7]14.3/9.9]13.3]12.5
2 0 112.6{15.2{12.515.515.2]13.7|12.6
3 0 [11.0110.1)13.4]12.1{10.1{11.4
4 0 |11.0112.1{10.3{9.4|14.5
5 0 110.0]10.8/9.0{12.5
6 0 |11.7]7.5]16.5
7 0 |11.9]13.0
8 0 110.§
9 0

Table 6. Crisp Template Correlation
for Male Speaker
Each cell shows the distance between a
pair of templates.
Digif 0| 1|2 |3|4|5]|6[7]8]9

01 0/10.0/85]9.2]|11.4/7.6]10.3]8.3[11.8{10.4

1 019.4(9.5(14.117.017.2]16.5(10.1| 8.1
2 0 15.9(13.9(8.4(9.119.7]11.8[12.2
3 0 [13.4{12.6(10.2]11.9]112.6/16.0
4 0 [13.3(14.7/14.3|18.3|17.6
5 0 |11.5(10.7/8.7| 8.9
6 0[6.5(6.5]11.6
7 0179|194
8 0 110.4
9 0]

Table 7. Crisp Template Correlation
for Female Speaker
Each cell shows the distance between a
pair of templates.

The correlation results, while interesting, do not
provide any revealing answers to the question of why the
female speaker's results were so impressive. On average,

the male speaker’s templates were more diverse, which
should indicate that they would be better for classification.
One possible answer is that the female speaker was British,
which may predispose her to speak clearly and accurately.
More trials are needed to determine which factors most
prominently affect the system.

7. Sub-Sampling Trials

Using the templates and a subset of the sample
waveforms from the initial trial set, sub-sampling trials
were performed to determine how well the crisp and fuzzy
algorithms respond to information loss. Given a waveform
recorded at a specific sampling frequency, sub-sampling
involves finding the maximum (or peak) value from a
group of samples within a specific time period. For
example, the template and sample waveforms were
sampled at 6 kHz. Sub-sampling at 1000 Hz involves
finding the maximum value from every 6 samples; sub-
sampling at 100 Hz means taking the maximum value from
every 60 samples. Table 8 shows the results of sub-
sampling.

The crisp system tends to be erratic and the results are
not consistent as the degree of information loss increases.
The fuzzy system is much more tolerant to information
loss, and degrades well. These results were expected, and
confirm the assertion that fuzzy systems are able to work
effectively even in the presence of uncertainty.

Sub-Sampling Crisp Fuzzy

Frequency (Hz)] % Correct] % Correct

1000 20 75
400 10 50
200 35 45
100 35 25

Table 8. Sub-Sampling Results
The Table shows the results of sub-
sampling a various frequencies.

8. Conclusions

Analysis of the recognition technique presented here
reveals that the use of fuzzy logic enhances the capabilities
of a speech recognition system with little additional cost in
either hardware or performance. For the male speaker, the
fuzzy system performed considerably better than the crisp
system. The results also showed that the fuzzy system
degraded better than the crisp system as the information's
uncertainty increased.

The ultimate goal of speech recognition is the design
of a system capable of recognizing continuous speech from
multiple speakers from a large vocabulary. Testing



speakers using templates from other speakers should
provide results that will aid in extending the system’s
ability to recognize speech from multiple speakers. In
addition, clustering algorithms can be used to determine
optimal templates for each word in the vocabulary and
various segmentation threshold values should be tested to
determine optimal levels for general recognition.
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